In 2010

146.
Narita, T., Tsurimoto, T., Yamamoto, J., Nishihara, K., Ogawa, K., Ohashi, E., Evans, T., Iwai, S., Takeda, S., and Hirota K. (2010) Human replicative DNA polymerase δ can bypass T-T (6-4) ultraviolet photoproducts on template strands. Genes Cells 15, 1228-1239

145.
Hirota, K., Sonoda, E., Kawamoto, T., Motegi, A., Masutani, C., Hanaoka, F., Szuts, D., Iwai, S., Sale, J.E., Lehmann, A., and Takeda, S. (2010) Simultaneous disruption of two DNA polymerases, Polη and Polζ, in avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions. PLoS Genet. 6, e1001151

144.
Kashiwagi, S., Kuraoka, I., Fujiwara, Y., Hitomi, K., Cheng, Q.J., Fuss, J.O., Shin, D.S., Masutani, C., Tainer, J.A., Hanaoka, F., and Iwai, S. (2010) Characterization of a Y-family DNA polymerase eta from the eukaryotic thermophile Alvinella pompejana. J. Nucleic Acids, Article ID 701472

143.
Hasegawa, M., Iwai, S., and Kuraoka, I. (2010) A non-isotopic assay uses bromouridine and RNA synthesis to detect DNA damage responses. Mutation Res. 699, 62-66

142.
Matsumoto, N., Toga, T., Hayashi, R., Sugasawa, K., Katayanagi, K., Ide, H., Kuraoka, I., and Iwai, S. (2010) Fluorescent probes for the analysis of DNA strand scission in base excision repair. Nucleic Acids Res. 38, e101

141.
Lin, L.-J., Yoshinaga, A., Lin, Y., Guzman, C., Chen, Y.-H., Mei, S., Lagunas, A.M., Koike, S., Iwai, S., Spies, M.A., Nair, S.K., Mackie, R.I., Ishino, Y., and Cann, I.K.O. (2010) Molecular analyses of an unusual translesion DNA polymerase from Methanosarcina acetivorans C2A. J. Mol. Biol. 397, 13-30

140.
Chijiwa, S., Masutani, C., Hanaoka, F., Iwai, S., and Kuraoka, I. (2010) Polymerization by DNA polymerase eta is blocked by cis-diamminedichloroplatinum(II) 1,3-d(GpTpG) crosslink: Implications for cytotoxic effects in nucleotide excision repair-negative tumor cells. Carcinogenesis 31, 388-393

139.
Guo, Y., Bandaru, V., Jaruga, P., Zhao, X., Burrows, C.J., Iwai, S., Dizdaroglu, M., Bond, J.P., and Wallace, S.S. (2010) The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair 9, 177-190